16 research outputs found

    Cooperativity and Stability in a Langevin Model of Protein Folding

    Full text link
    We present two simplified models of protein dynamics based on Langevin's equation of motion in a viscous medium. We explore the effect of the potential energy function's symmetry on the kinetics and thermodynamics of simulated folding. We find that an isotropic potential energy function produces, at best, a modest degree of cooperativity. In contrast, a suitable anisotropic potential energy function delivers strong cooperativity.Comment: 45 pages, 16 figures, 2 tables. LaTeX. Submitted to the Journal of Chemical Physic

    Genome-wide functional analysis of human 5' untranslated region introns

    Get PDF
    Genes with short 5'UTR introns have higher expression than genes with no or long 5'UTR introns. Complex evolutionary forces act on these introns

    A critical assessment of Mus musculus gene function prediction using integrated genomic evidence

    Get PDF
    Background: Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated. Results: In this study, a standardized collection of mouse functional genomic data was assembled; nine bioinformatics teams used this data set to independently train classifiers and generate predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the best performing submissions were combined in a single set of predictions. We identified strengths and weaknesses of current functional genomic data sets and compared the performance of function prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000 currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41% precision, with 26% of GO terms achieving a precision better than 90%. Conclusion: We performed a systematic evaluation of diverse, independently developed computational approaches for predicting gene function from heterogeneous data sources in mammals. The results show that currently available data for mammals allows predictions with both breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse genes that remain uncharacterized

    Characterizing gene sets with FuncAssociate

    No full text
    Summary: FuncAssociate is a web-based tool to help researchers use Gene Ontology attributes to characterize large sets of genes derived from experiment. Distinguishing features of FuncAssociate include the ability to handle ranked input lists, and a Monte Carlo simulation approach that is more appropriate to determine significance than other methods, such as Bonferroni or ˘Sidák p-value correction. FuncAssociate currently supports 10 organisms (Vibrio cholerae, Shewanella oneidensis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana

    Metabolomic Identification of Novel Biomarkers of Myocardial Ischemia

    No full text
    Background—Recognition of myocardial ischemia is critical both for the diagnosis of coronary artery disease and the selection and evaluation of therapy. Recent advances in proteomic and metabolic profiling technologies may offer the possibility of identifying novel biomarkers and pathways activated in myocardial ischemia. Methods and Results—Blood samples were obtained before and after exercise stress testing from 36 patients, 18 of whom demonstrated inducible ischemia (cases) and 18 of whom did not (controls). Plasma was fractionated by liquid chromatography, and profiling of analytes was performed with a high-sensitivity electrospray triple-quadrupole mass spectrometer under selected reaction monitoring conditions. Lactic acid and metabolites involved in skeletal muscle AMP catabolism increased after exercise in both cases and controls. In contrast, there was significant discordant regulation of multiple metabolites that either increased or decreased in cases but remained unchanged in controls. Functional pathway trend analysis with the use of novel software revealed that 6 members of the citric acid pathway were among the 23 most changed metabolites in cases (adjusted P�0.04). Furthermore, changes in 6 metabolites, including citric acid, differentiated cases from controls with a high degree of accuracy (P�0.0001; cross-validated c-statistic�0.83). Conclusions—We report the novel application of metabolomics to acute myocardial ischemia, in which we identified novel biomarkers of ischemia, and from pathway trend analysis, coordinate changes in groups of functionally relate

    Evidence for dynamically organized modularity in the yeast protein-protein interaction network

    No full text
    In apparently scale-free protein-protein interaction networks, or \u27interactome\u27 networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the \u27hubs\u27, interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: \u27party\u27 hubs, which interact with most of their partners simultaneously, and \u27date\u27 hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes--or modules--to each other, whereas party hubs function inside modules

    Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury

    No full text
    Emerging metabolomic tools have created the opportunity to establish metabolic signatures of myocardial injury. We applied a mass spectrometry–based metabolite profiling platform to 36 patients undergoing alcohol septal ablation treatment for hypertrophic obstructive cardiomyopathy, a human model of planned myocardial infarction (PMI). Serial blood samples were obtained before and at various intervals after PMI, with patients undergoing elective diagnostic coronary angiography and patients with spontaneous myocardial infarction (SMI) serving as negative and positive controls, respectively. We identified changes in circulating levels of metabolites participating in pyrimidine metabolism, the tricarboxylic acid cycle and its upstream contributors, and the pentose phosphate pathway. Alterations in levels of multiple metabolites were detected as early as 10 minutes after PMI in an initial derivation group and were validated in a second, independent group of PMI patients. A PMI-derived metabolic signature consisting of aconitic acid, hypoxanthine, trimethylamine N-oxide, and threonine differentiated patients with SMI from those undergoing diagnostic coronary angiography with high accuracy, and coronary sinus sampling distinguished cardiac-derived from peripheral metabolic changes. Our results identify a role for metabolic profiling in the early detection of myocardial injury and suggest that similar approaches may be used for detection or prediction of other disease states
    corecore